Search results for "ENOS uncoupling"

showing 3 items of 3 documents

New Therapeutic Implications of Endothelial Nitric Oxide Synthase (eNOS) Function/Dysfunction in Cardiovascular Disease

2019

The Global Burden of Disease Study identified cardiovascular risk factors as leading causes of global deaths and life years lost. Endothelial dysfunction represents a pathomechanism that is associated with most of these risk factors and stressors, and represents an early (subclinical) marker/predictor of atherosclerosis. Oxidative stress is a trigger of endothelial dysfunction and it is a hall-mark of cardiovascular diseases and of the risk factors/stressors that are responsible for their initiation. Endothelial function is largely based on endothelial nitric oxide synthase (eNOS) function and activity. Likewise, oxidative stress can lead to the loss of eNOS activity or even “uncoupli…

0301 basic medicineAdipose tissueReview030204 cardiovascular system & hematologyPharmacologymedicine.disease_causeendothelial dysfunctionEpigenesis Geneticlcsh:Chemistry0302 clinical medicineEnoscardiovascular diseaseeNOS uncouplingoxidative stressEndothelial dysfunctionlcsh:QH301-705.5Spectroscopyenvironmental stressorsbiologyGeneral MedicineComputer Science Applicationsmedicine.anatomical_structureCardiovascular Diseasesmedicine.symptomOxidation-ReductionCell signalingEndotheliumNitric Oxide Synthase Type IIIInflammationModels BiologicalCatalysisInorganic Chemistry03 medical and health scienceslife style/behavioral health risk factorsmedicineAnimalsHumansPhysical and Theoretical ChemistryMolecular Biologybusiness.industryOrganic Chemistrymedicine.diseasebiology.organism_classification030104 developmental biologylcsh:Biology (General)lcsh:QD1-999Socioeconomic FactorsinflammationSoluble guanylyl cyclasebusinessOxidative stressInternational Journal of Molecular Sciences
researchProduct

Regulation of vascular function and inflammation via cross talk of reactive oxygen and nitrogen species from mitochondria or nadph oxidase—implicatio…

2020

Oxidative stress plays a key role for the development of cardiovascular, metabolic, and neurodegenerative disease. This concept has been proven by using the approach of genetic deletion of reactive oxygen and nitrogen species (RONS) producing, pro-oxidant enzymes as well as by the overexpression of RONS detoxifying, antioxidant enzymes leading to an amelioration of the severity of diseases. Vice versa, the development and progression of cardiovascular diseases is aggravated by overexpression of RONS producing enzymes as well as deletion of RONS detoxifying enzymes. We have previously identified cross talk mechanisms between different sources of RONS, which can amplify the oxidative stress-m…

0301 basic medicineAntioxidantmedicine.medical_treatmentReview030204 cardiovascular system & hematologyMitochondrionmedicine.disease_causelcsh:Chemistry0302 clinical medicineEndothelial dysfunctionEndothelial dysfunctionlcsh:QH301-705.5SpectroscopyNADPH oxidasebiologyChemistryGeneral MedicineReactive Nitrogen SpeciesComputer Science ApplicationsCell biologyMitochondriaCardiovascular DiseasesDisease Progressionmedicine.symptomInflammationENOS uncouplingOxidative phosphorylationEndothelial dysfunction; ENOS uncoupling; Kindling radicals; Low-grade inflammation; Mitochondria; NADPH oxidase; Oxidative stress; Redox cross talkLow-grade inflammationCatalysisRedox cross talkInorganic Chemistry03 medical and health sciencesmedicineDiabetes MellitusAnimalsHumansPhysical and Theoretical ChemistryMolecular BiologyInflammationNADPH oxidaseOrganic ChemistryNADPH Oxidasesmedicine.diseaseAngiotensin II030104 developmental biologylcsh:Biology (General)lcsh:QD1-999Oxidative stressbiology.proteinKindling radicalsReactive Oxygen SpeciesOxidative stress
researchProduct

Crucial role for Nox2 and sleep deprivation in aircraft noise-induced vascular and cerebral oxidative stress, inflammation, and gene regulation

2018

Abstract Aims Aircraft noise causes endothelial dysfunction, oxidative stress, and inflammation. Transportation noise increases the incidence of coronary artery disease, hypertension, and stroke. The underlying mechanisms are not well understood. Herein, we investigated effects of phagocyte-type NADPH oxidase (Nox2) knockout and different noise protocols (around-the-clock, sleep/awake phase noise) on vascular and cerebral complications in mice. Methods and results C57BL/6j and Nox2 −/− (gp91phox −/−) mice were exposed to aircraft noise (maximum sound level of 85 dB(A), average sound pressure level of 72 dB(A)) around-the-clock or during sleep/awake phases for 1, 2, and 4 days. Adverse effec…

0301 basic medicinemedicine.medical_specialtyEndotheliumAircraft10208 Institute of NeuropathologyInflammation610 Medicine & health030204 cardiovascular system & hematologySystemic inflammationmedicine.disease_cause2705 Cardiology and Cardiovascular Medicine03 medical and health sciences0302 clinical medicineBasic ScienceVascular BiologyInternal medicineeNOS uncouplingmedicineHumansEndothelial dysfunctionEndothelial dysfunctionInflammationSystemic inflammationbusiness.industryEnvironmental stressorCerebral redox balancemedicine.diseaseEnvironmental stressorSleep deprivationNoiseSleep deprivationOxidative Stress030104 developmental biologymedicine.anatomical_structureEndocrinologyNADPH oxidase-derived oxidative stress570 Life sciences; biologymedicine.symptombusinessNoiseCardiology and Cardiovascular MedicineOxidative stressNoise exposure
researchProduct